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The flux line lattice (FLL) of Type-II superconductors is a topic of much
recent interest. The FLL may be imaged directly using small-angle neutron
scattering (SANS). Since subtle properties of the underlying superconduct-
ing state may be reflected in the orientation and shape of the FLL, and in
the flux line form factor, SANS studies of the FLL continue to both challenge
and propel our understanding of superconductivity.

The objectives of this experiment are to develop a cursory comprehension
of what FLL studies entail. Without being too caught in the specifics, it
is also hoped the participant will attain a familiarity with the diffraction
technique, essential for SANS studies of the FLL, but moreover very useful
for neutron or X-ray explorations of other systems.

We will first begin with an outline of superconductivity, describing fun-
damental theories and features that must be borne in mind throughout any
FLL study. In section 2 we turn our attention to diffraction theory at a
level appropriate for our introductory FLL experiment. With the aim of
providing a handy reference for the reader, with the relevant ideas collected
in one place, this second section takes rather a formal approach. The SANS
instrument and associated considerations are outlined in section 3. Finally
in 4 the details are given of the superconductor (niobium) chosen for our in-
troductory experiment, and a list of several research topics is proposed, any
one of which can be readily investigated in the pedagogical beamtime avail-
able. Throughout this treatise, questions may be discovered, to stimulate
the conscious reader.

1 Superconductivity

It is nearly a century since superconductivity was discovered in 1911 by
Kamerlingh-Onnes who observed an abrupt drop to zero of the resistivity
of mercury below 7T, ~ 4K. It is just twenty or so years since the high-T,
superconductors were discovered: in 1986 by Bednorz and Miiller [1] in the
La-Ba-cuprate system (7, ~ 36 K) and in the following year by Wu et al. [2]
in the Y-Ba-cuprate (YBCO) system with a 7. ~ 93 K. This temperature is
accessible using liquid nitrogen, making YBCO today’s superconducting star
of laboratory demonstrations.

Under the influence of an applied magnetic field, mercury has quite differ-
ent superconducting properties from the cuprates. Hg will expel from its bulk
all applied field below H.(T) in an effect commonly accredited to Meifiner,
rather neglecting his postdoctoral collaborator Ochsenfeld, following their
discovery in 1933. In the cuprates the perfect diamagnetism holds only be-
low a lower critical field H.;(T). Above this Meissner phase, but below the
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Figure 1: Pictures produced by Bitter decoration — where ferromagnetic
nanoparticles are absorbed onto the surface of a superconductor with
field applied parallel to the crystal (100) direction, from Obst [3].

normal-superconducting transition at an upper critical field He,(T'), the field
penetrates as lines of magnetic flux with each flux line carrying one quantum
of flux ®; = 2. Superconductors that exhibit this mized state (Fig. 1(a))
are designated as ‘“Type-I1", whereas those like Hg are ‘“Type-I'.

The interaction between flux lines is usually repulsive at all spacings,
though for certain superconductors (such as high-purity niobium) a long-
range attractive FL interaction just above H.(7T) may (depending on the
sample shape) result in an intermediate mized state composed of Meissner
regions and regions of constant flux density B, (Fig. 1(b)).

Q. Are the values of “induction” and “flux density” different in the mized
state ¢ What about in the intermediate mized state ?

In Fig. 2 we plot the phase diagram typical of a Type-II superconductor
possessing an intermediate mixed state.

1.1 Phenomenological Theories

At zero field, the normal to superconducting transition is second order i.e. the
order parameter describing the superconductivity goes continuously to zero
as T'— T.. Thus, following the usual approach of Ginzburg and Landau, the
free energy may be expanded in powers of the order parameter. In his Nobel
prize-winning work, Abrikosov showed that the lowest energy solution of the
Ginzburg-Landau equations for fields H.; < H < H¢ is indeed a lattice of
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Figure 2: Diagram depicting the different states present in high-purity nio-
bium, as a function of temperature and field applied parallel to the fourfold
[001] crystal axis. The upper critical field H(T) is independent of sample
shape, since at these fields the sample magnetization is zero. However the
applied field below which the intermediate mixed state is entered depends on
the sample shape via a demagnetization factor; here this line is representative
of a cylindrical sample.
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flux lines [4], with the area A of one FLL unit cell satisfying the condition

®, = BA (1)

where B is the flur density and &, = % = 2.07 x 107 Tm? is the flux
quantum.

Q. How does A change as a function of applied field H for high-purity
Nb (c.f. Fig. 2) ¢

Abrikosov further showed that the Ginzburg-Landau free energy is sen-
sitive to the shape of the FLL, with the free energy density a monotonically
increasing function of the geometrical parameter S5. In the simplest — i.e.
isotropic  case, a square FLL coordination has g5 = 1.18 while a hexag-
onal coordination yields S, = 1.16. Thus the equilibrium FLL prefers an
equilateral triangular half-unit cell in the isotropic situation (Fig. 3). It is
easy to envisage that underlying anisotropies of the superconductor can man-
ifest themselves as equilibrium distortions from the equilateral triangle, or as
transitions into other FLL structures. In the high-7; cuprate superconduc-
tors (such as YBCO), for example, a square FLL at high fields is believed to
stem from an asymmetric d-wave order parameter.

Q. Can you guess what FLL structures may give rise to the 2D diffraction
image on the cover of this treatise ¢

In Fig. 4 the structure of an isolated flux line is illustrated. The core
of each flux line is not superconducting it is in the normal state. The
diagram illustrates the important parameters in superconductivity:

e the Ginzburg-Landau coherence length & measures the distance over
which the superconducting order parameter responds to a perturbation;

e the London penetration depth Ar, is the characteristic length of the
decay of any field from a normal region, in this case the core of a flux
line;
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The Ginzburg-Landau theory is only strictly valid in the region where
the order parameter becomes vanishingly small i.e. at temperatures close to
T.. In 1935, some score years before the prime of Landau and Ginzburg, the
brothers F. and H. London proposed a phenomenological description of the
superconducting state in the limit where all magnetic fields and supercurrents
are weak and have a slow variation in space. In this description, a densely
packed array of flux lines is represented by two-dimensional delta functions
in the London equation

H+\NVAVAH=®z) dr" ~R)) (2)

]

where the flux lines are directed along the z-axis and Rjl is the position of
the jth flux line in the (x,y) plane. '

It is easy to see that, if just one flux line is considered in (2), that the
field decays exponentially away from the core with characteristic length A;,.
In (2) one assumes that the core of each flux line has a vanishingly small
radius €& — 0 so that the corresponding singularity can be replaced by a
delta function, and that the contributions from isolated flux lines can be
simply superimposed. These assumptions are acceptable if £ < d < A,
where d is the spacing between flux lines. We will return to (2) in regard of
the flux line form factor, a quantity measurable using SANS.



2 Bragg diffraction

We start with the elastic differential cross-section giving the probability of
neutrons scattering into a solid angle df2

do m,r ix.R;
- 27rh2 ‘/ dr Ze (3)

where m,, is the neutron mass, V is the Fermi pseudo-potential that is defined
(in the Born approxzimation) to give isotropic scattering from one of the N
similar scatterers centred at R;. & is known as the scattering vector. These
italicised terms and (3) should already be familiar from the opening lectures
of this summer school. For the basic concepts of neutron scattering set in a
wider context, the keen reader is referred to Squires [5] and Lovesey [6].

We see that (3) separates into a structure factor

ik.R;

(4)

and a form factor Fa(k) that is simply the Fourier transform of the potential
for a single scatterer

Fa(k) = Mn /V(r)ei"'rdr (5)

21 h?

2.1 An array of flux lines

The magnetic moment operator for a neutron is g = —yuxo where o is

the Pauli spin operator, the nuclear magneton uy = 2‘;}? and the neutron
‘P

gyromagnetic ratio v = 1.913. The interaction of a neutron with a magnetic
field H is described by the potential

—puH=—yuno.H

The operator o depends on the spin coordinates of the neutron. With unpo-
larised incident neutrons, H = |H|, and the elastic differential cross-section
(3) becomes

lK,I‘dr

w (o

2%712 S(R)

5 (k)

/H lh‘,l‘dr

h
2e”

16<I>2

since iy =~ 2"— and the flux quantum &, =
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Figure 5: A perfect flux line lattice is shown in (a) viewed perpendicular to
the field direction. The cores of the flux lines are shaded. The periodic field
distribution leads to a two-dimensional array of spots in reciprocal space
(b). These are swept through the Ewald sphere (that defines the locus of
points where the scattering is elastic) as the FLL is rotated. Reproduced
from Huxley [7].

2.2 A perfect flux line lattice

Here we consider the flux line lattice (FLL) as a regular arrangement of rigid
straight rods. The perfect arrangement in real space leads to a 2D array of
spots in reciprocal space (Fig. 5). For a large (infinite) crystal the structure
factor (4) exhibits d-function peaks in the usual way

S(k) x i(k — G)

G is a reciprocal lattice vector of the FLL. We observe no elastic scattering
unless the Bragg condition kK = G and the elastic condition |k| = |k’| are
satisfied, where k and k' are the incident and scattered wave vectors respec-
tively (note kK = k — k’). These relations are combined in a more familiar
form of Bragg’s law

2dsin g = n\,

where n € Z, d is the Bragg plane spacing, 26g is the angle between incident
k and diffracted k' neutrons, and A, is the neutron wavelength. For typical
flux line spacings d ~ 1000 A (Q. To what flur density would this correspond
? c.f. (1)), and employing cold neutrons (A, ~ 10A), we find 6 ~ 0.3°,
perhaps not surprisingly favouring the use of a SANS instrument.

2.3 The rocking curve

By rotating the sample (and cryomagnet) through a Bragg peak (the “rocking
curve”) we collect an integrated intensity Ig that, when normalised to the



incident neutron flux Iy, yields an integrated reflectivity

Ia o8 A 2
Ro=—=——"-""—1tlh 6
G =1, 16 A%sin 204 hel (6)
where ¢ is the illuminated sample thickness and A is the FLL unit cell area.
The form factor hg is defined as the normalized Fourier transform of the

two-dimensional field distribution for a single flux line

_ [ H(r)e'¢rdr

h
G D,

(7)
where @ is the flux quantum.

Q. What is the field dependence of hg as predicted by the London equation
(2) ¢
The integrated reflectivity (6) is particularly useful as it can be measured
in absolute units and is independent of the instrument resolution function
and any small mosaic spread arising from more than one FLL crystallite
existing in different regions of the sample.

Although not as pleasing to the eye as FLL structural studies, the flux
line form factor may be of great consequence as demonstrated in very recent
work [8] where an anomalous field dependence of the form factor may indicate
the presence of a novel, inhomogeneous superconducting state known as the
Fulde-Ferrell-Larkin-Ovchinnikov state.

3 SANS instruments

A schematic of the general SANS instrument is shown in Fig. 6. At the
NCNR, the two 30 m SANS instruments (NG3-SANS and NG7-SANS) allow
a neutron wavelength in the range 5 20 A, determined by the rotational speed
of the velocity selector. The wavelength spread can also be changed by tilting
the velocity selector axis with respect to the beam direction, though ~ 15%
is typically used. For FLL studies, usually a small angular spread is affected
by removing all 8 of the neutron guides. With this maximum collimation, we
also have a choice of source apertures (placed upstream of the collimation),
namely 1.43 cm, 2.20 cm or 3.81 cm. Due to the small Bragg angles involved,
the detector is usually placed as far downstream as possible.

The simple geometry of a SANS experiment (Fig. 7) means that the in-
strument resolution function can easily be calculated. Some insight can be
derived into the instrument resolution, and moreover the long range struc-
ture and degree of order of the FLL, by using a mathematically convenient
model in which contributions to the finite width of observed diffraction spots
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Figure 6: A schematic of a typical SANS instrument. An incoming neutron
beam with wavelength spread ~ 15% and small angular spread =~ 0.1° is
prepared by a velocity selector and a collimation of up to 15m. A similar
distance between the sample and the multidetector allows the detection of
neutrons scattered at small angles.

are represented by Gaussians with similar standard deviations to the actual
distributions [9]. These contributions include the angular spread a of the
incoming beam k;, the effective spread b of the Bragg plane angle away from
the mean — in reciprocal space this is the angular spread of k in the scat-
tering plane; the effective spread ¢ of the Bragg angle g i.e. the spread in
the magnitude of the scattering vector |k|.

The angular spread of the incoming beam is determined by the collima-
tion and a pair of apertures at either end. The source aperture denotes the
aperture closest to the neutron source, while the defining or sample aperture
is closest to the sample. Here we considering the source and sample apertures
as thin slits of width s, and s, respectively. The FWHM a is [10]

So So Sa
1. AEFN
a~ 1 'c 1 'c 'd ' 'd (8)
Sa| —+ — |, otherwise
le g

Here [, is the collimating distance between the apertures and /4 is the dis-
tance from the sample aperture to the detector. For circular apertures a
more complicated geometrical construction contributes small corrections to
(8) [10].

With the geometry of Fig. 7, b is a measure of the correlations along the
flux lines that give a finite width W7, of the spot in reciprocal space parallel to
the field. b will in addition include any small mosaic spread that contributes
to a resolvable Bragg peak.
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Figure 7: The experiment geometry usually chosen for FLL SANS experi-
ments. A square FLL is illustrated in real and reciprocal space. Q. How
are the 2D real and reciprocal space lattices related for a FLL of arbitrary
shape ? Measurement of the angular width of the rocking curves W, and
the radial W, and azimuthal W, widths of a diffraction spot projected on
the detector allows estimation of the size of the spot in reciprocal space in
three dimensions; this may be expressed by variation W, in the length of the
reciprocal vector G and widths of the spot in reciprocal space parallel W,
and perpendicular W to the field.
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The wavelength spread A\, /A, of the incoming beam plus the spread
W, = AG/G in spacing between FLL Bragg planes are combined in ¢

2 2
c AN
— ] = ! w2 9
(@) =(50) X
Here we will focus on the rocking curve width W,. By integrating over
the distribution in diffracted beam as a function of rocking angle w, one finds

W2 =a®+b* + (10)

For small angle scattering we see from (9) the spread ¢ in Bragg angle is
small, even for the &~ 15% wavelength spread coming from a velocity selector.
This makes the typical SANS instrument employing a velocity selector quite
insensitive to Wy. For the rocking curve width (10) the instrument resolution
is essentially the angular spread of the incoming beam  typically &~ 0.1°.

4 Introductory experiment

For our pedagogical experiment, the FLL in high-purity elemental niobium
will be examined. Nb has the following superconducting parameters:

e 7. =93K
e k=07
o & =390A

Q. For what field region, if any, is the London theory wvalid for this low-k
superconductor ¢

Our sample will be a single-crystal Nb sphere of diameter ~ 13 mm,
mounted on a closed-cycle refrigerator with a base temperature of 1.9 K.
The refrigerator and sample will be inserted into an electromagnet, provid-
ing fields of up to 500 mT applied parallel to the fourfold [001] axis of the
body-centred cubic niobium. The (H,T) phase diagram for this situation
is illustrated in Fig. 2. The FLL should be formed by applying the field
at a temperature above T, before cooling in the field. The sample, electro-
magnet and CCR are fixed onto a rotation stage which, by suitable scans
of the rotation angle, enables rocking curves to be measured. Data analy-
sis will be carried out using the Grasp package, illustrated in Fig. 8 to aid
pre-experiment familiarity. Detailed help on this analysis package will be
available at the instrument.
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Figure 8: A typical example of the use of Grasp. Here the flux density of a

hexagonal FLL is measured.
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Our treatise is concluded with a list of suggested topics, any one of which
(or more for the very keen) is suitable for the short summer-school study.
They are:

An investigation of FLL structure as a function of applied field in
both the mixed state and intermediate mixed state at base temper-
ature (1.9K).

An investigation of FLL structure as a function of temperature at an
applied field of either i) 175mT (in the mixed state), ii) 100 mT (con-
centrating on the intermediate mixed state), iii) low applied fields close
to 1.

An investigation of the temperature dependence of By, carried out at
a suitable applied field (c.f. Fig. 2).

A precise determination of the applied field at which the intermedi-
ate mixed state is entered for our spherical sample at some suitable
temperature (note Fig. 2 is representative of a cylindrical sample).

An exploration of the flux line form factor as a function of applied field
in the mixed state at base temperature.

An exploration of the flux line form factor as a function of temperature
in the mixed state at an applied field of 175 mT.

It is left to each summer-school group to choose and direct their study, but
your friendly instrument scientist will, as always, be on hand so have

fun !
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